Skip to main content
Home

Dedicated to discovery

  • Company
    • About us
    • Careers
    • Events
  • Support
    • Laboratory Planning
  • Contact
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
Home
  • Products
    • PURELAB®
      • PURELAB® Dispenser
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • Purelab Chorus 2+ (RO/DI/UV) / (RO/EDI/UV)
    • CENTRA®
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA®
      • MEDICA® 150
      • MEDICA® 7/15
      • MEDICA® BIOX 2024
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE®
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA Full Product Range
  • Applications
    • Atomic Absorption Spectroscopy
    • Cell and Tissue Culture
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • High Performance Liquid Chromatography (HPLC)
    • Immunochemistry
    • Liquid Chromatography
      • High Performance Liquid Chromatography
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • BROSCHÜREN
    • Blog
    • Case Studies
    • Ultrapure water
    • Guides and White Papers
  • Where to buy
  • Contact us
Home
  • Contact us
  • Products
    • PURELAB®
      • PURELAB® Dispenser
      • PURELAB® Flex
      • PURELAB® Quest
      • PURELAB® Pharma Compliance
      • PURELAB® Chorus 1 Complete
      • PURELAB® Chorus 1
      • PURELAB® Chorus 2
      • PURELAB® Chorus 3
      • Purelab Chorus 2+ (RO/DI/UV) / (RO/EDI/UV)
    • CENTRA®
      • CENTRA® R60/120
      • CENTRA® R200
      • CENTRA® RDS
    • MEDICA®
      • MEDICA® 150
      • MEDICA® 7/15
      • MEDICA® BIOX 2024
      • MEDICA® Pro-R & Pro-RE
      • MEDICA® R200
      • MEDICA® EDI 15/30
      • MEDICA® Pro-LPS
      • MEDICA® Pro EDI 60/120
      • MEDICA® BIOX
      • Hubgrade
    • BIOPURE®
      • BIOPURE® 300/600
    • PURENERGY 30
    • ELGA Full Product Range
  • Applications
    • Atomic Absorption Spectroscopy
    • Cell and Tissue Culture
    • Clinical Biochemistry
    • Electrochemistry
    • Gas Chromatography
    • General lab water requirement
    • High Performance Liquid Chromatography (HPLC)
    • Immunochemistry
    • Liquid Chromatography
      • High Performance Liquid Chromatography
    • Mass Spectrometry
    • Microbiology
    • Molecular Biology
    • Spectrophotometry
  • Technologies
    • Activated Carbon
    • Electrodeionization (EDI)
    • Filtration
    • Ion Exchange
    • PureSure
    • Reverse Osmosis
    • Ultraviolet
  • Impurities In Water
    • Dissolved Gases
    • Inorganic Compounds
    • Microorganisms & Bacteria
    • Organic Compounds
    • Particulates
  • Knowledge
    • BROSCHÜREN
    • Blog
    • Case Studies
    • Ultrapure water
    • Guides and White Papers
  • Where to buy
  • Contact us
  • Company
    • About us
    • Careers
    • Events
  • Support
    • Laboratory Planning
  • Contact
  • EN
  • DE
  • ES
  • FR
  • IT
  • PT
  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Trademarks
  • Impressum
  • What is CLSI Water?
Water In The Lab
Water Purity

What is CLSI Water?

24 Jul 2023
- by Dr Paul Whitehead

Scientist holding a sphere displaying digital icons relating to science and medicine

CLSI Water is Clinical Laboratory Reagent Water (CLRW) as defined in Clinical and Laboratory Standards Institute document “Preparation and Testing of Reagent Water in the Clinical Laboratory; Approved Guideline-Fourth Edition”. This is still a key reference document for water purity in clinical laboratories. Collegiate of American Pathologists (CAP) accreditation is used in laboratories around the world. The CAP recommendation is that, as a minimum, water in the laboratory should meet Clinical Laboratory Reagent Water (CLRW) as specified by CLSI.

Clinical Laboratory Reagent Water (CLRW) specification is:

Bacteria     <10 CFU/ml
Resistivity  >10 MΩ.cm
TOC             <500 PPB
Particles     0.2um filtration or better


The CLSI guideline also states that for instrument feed water – “Use of CLRW for this application must be confirmed with the manufacturer of a specific instrument. Water meeting the manufacturer’s specifications must be used.” CLSI clearly anticipate that CLRW may not be pure enough for all analyzer feeds. The onus is on the analyzer company to validate their chemistries and use purified water of a suitable purity to give accurate and reproducible results. 

CLRW Specification Limits 4 Types of Impurity in Laboratory Water

The CLRW specification limits four key types of impurity in pure water:

  • Ions
  • Particulates
  • Organics
  • Bacteria and bacterial by-products


All will impact on clinical analyzer performance, either by direct interference with the chemistries of tests or indirectly, by introducing errors in the measurements.

Ionic Impurities and CLSI Water

The CLRW resistivity specification of >10MΩ.cm restricts the concentrations of ionic impurities to ppb levels or less and, in effect, requires the elimination of carbon dioxide. This is adequate for most clinical work including general chemical, electrolyte, lipid and protein assays, enzymology, enzyme immunoassay, toxicology and therapeutic drug monitoring and, more recent, molecular biological techniques. When trace elements need to be determined, the water resistivity needs to be much higher – at 18.2 MΩ.cm.

Low Levels of Particulates in CLSI Water

The absence of particulates is a general requirement for all types of application and is especially critical with the low liquid volumes used in modern assays. Particles can clog needles and sample handling manifolds. Deposits of particles encourage the formation of bio-film and bacterial growth and can affect the transmissivity and path length of spectroscopic cells. CLRW relies on filtration to remove particulates. However, the 0.2 µm filters specified may not always be adequate.

Total Organic Carbon (TOC)

Similarly, the TOC spec of <500 ppb in CLRW is a reflection of earlier standards and allows scope for the presence of a wide variety of organic compounds such as carboxylic acids and polyaromatics, which could jeopardize assays. Carboxylic acids can interfere with enzymology and enzyme immunoassays by binding to active sites and complexing with co-factor metals. Other organics can inhibit enzymes and affect fluorescent detection.  

Reducing Bacterial Contamination in CLRW

Bacterial contamination has serious effects on all aspects of analyzer operation. The key is achieving consistently low levels. For example, problems can arise in immunoassay due to flurescein-based dye released from bacteria (e.g. Pseudomonas Aureuginosa) giving high blanks and out-of-range standards during calibration and false positives with samples.  
             
Specifications or recommendations are also provided for five other types of purified water to meet different needs in clinical laboratory testing but CLRW is the only one specified in detail. Throughout the document, CLSI emphasizes the need for good practice and rigorous trending of water system parameters for all types of water to ensure that water purity is achieved and maintained. Ultrapure Water must be validated as fit for purpose and water purification system validation is strongly recommended.

Dr Paul Whitehead 

After a BA in Chemistry at Oxford University, Paul focused his career on industrial applications of chemistry. He was awarded a PhD at Imperial College, London for developing a microwave-induced-plasma detector for gas chromatography. He spent the first half of his career managing the analytical support team at the Johnson Matthey Research/Technology Centre,specialising in the determination of precious metals and characterising applications such as car-exhaust catalysts and fuel cells. Subsequently, as Laboratory Manager in R&D for ELGA LabWater, he has been involved in introducing and developing the latest water purification technologies. He now acts as a consultant for ELGA.

 

To discuss your clinical laboratory water requirements, please contact ELGA or an Approved Partner in your country.

  • Sales Enquiry
  • Get a Quote
  • Technical Support
  • Find an Approved Partner

Sales Enquiry

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Get a Quote

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

I'd like to receive updates from ELGA LabWater & ELGA Approved Partners based on my details.

Technical Support

At ELGA LabWater, we have exciting offers and news about our products and services that we hope you’d like to hear about. We will use your information to predict what you might be interested in. We will treat your data with respect and you can find the details in our Privacy Policy.

ELGA LabWater works with a network of Approved Partners. In order to answer your questions or enquiries, we may pass your contact details to an Approved Partner, who may contact you directly. 

Call us

Can't find what you are looking for?

Support Number
+44 (0)20 3567 7300
United Kingdom Sales
+44 (0)1628 879 704
United States of America Sales
+1 877-315-3542
France Sales
+33 1 40 83 65 00
China Sales
+86 400-616-8882

 

ELGA LabWater US Headquarters

ELGA LabWater North America
5 Earl Ct Suite 100
Woodridge, IL 60517
USA

Tel: 630-343-5251

Case Studies

  • Abbott Diagnostics
  • DASA Medical Diagnostics
  • NeoDIN Medical Institute
  • North Staffordshire NHS Trust
  • Olsberg Vocational College

Resources

  • Learn About Ultrapure Water
  • Guides and White Papers
  • Purification Technologies
  • Applications
  • Impurities In Water
  • Latest Blog
  • Water Purity - Different Types of Pure Water
  • What is Clinical Laboratory Reagent Water (CLSI)?
  • What is Total Organic Carbon (TOC)?

© VWS (UK) Ltd. trading as ELGA LabWater. 2025 - All rights reserved.
ELGA is the global laboratory water brand name of Veolia.

  • Privacy policy
  • Terms & Conditions
  • Global Legal Compliance
  • Patents
  • Trademarks
  • Impressum
  • Language
    • Deutsch
    • English
    • Español
    • Français
    • Italiano
    • Português
    • 日本語
    • 中文
  • Other Veolia Sites
    • Veolia
    • Veolia Foundation
    • Veolia Water Technologies
Elga Veolia
TOP

© 2017 ELGA Veolia